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Survivorship in zoo-housed giraffe

Supplemental methods

R code example
Cox proportional hazard analysis in R (R Core Team 2023) with the 
survival package (Therneau 2022) was applied.

The code is set up as
result <- coxph(Surv(time, status) ~ Sex + BirthLocation + Birth 

year, data =  data)
when using the birth year as a continuous variable, and
res.cox <- coxph(Surv(time, status) ~ Sex + BirthLocation + Birth 

Decade, data =  data)
when using birth decades as cohorts. ‘time’ is the age of the 

animal (either at death or at the set cutoff), ‘status’ is whether 
the animal is dead or alive at the cutoff. Note that the number of 
factors used may vary between models.

The Siler mortality model
The Siler mortality model consists of three simple competing 
hazards which are mathematically artificial but have a biological 
interpretation: a hazard decreasing with age, a constant base 
hazard and a hazard which increases with the individual’s 
age (Siler 1979). This corresponds to the general pattern of a 
neonate/juvenile mortality risk that declines with birth (i.e. being 
highest directly at birth), a basic mortality risk all animals face 
and an increasing likelihood of dying as animals become older 
(senescence) (Figure 3A).

The hazard (= risk) at time t (written as h(t)) in the model is 
expressed by five non-negative parameters,

 

where a1  exp(-a2 t) expresses the decreasing hazard with age, 
b1 exp(b2 t) is the increasing hazard and c denotes the age-
independent base hazard.

It is a routine task to obtain different functions of the age t 
describing the mortality of a population, as the cumulative hazard 
contingent conditioned on having survived to age t0, by integration 
of the hazard from t0 to t, formally,

where

This equation yields the typical U-shaped graph of a Siler mortality 
curve of a high neonate and declining juvenile mortality, a turning 
point at the lowest (basal) mortality and an increase in mortality 
towards old age (Fig. 3A)

Given the cumulative hazard contingent, the survival contingent 
conditioned on having survived to age t0 is given as

 

For brevity, we will abbreviate S(t)= S(0,t). Hence, S(t’) is the 
proportion of all born individuals which survive at least until age t’ 
and S(t0,t’) is the proportion of all individuals that reached age t0 
and survived at least until age t’. Simple calculus reveals

This equation yields the typical descending survivorship graph 
with an initial drop for neonate/juvenile mortality, a possible 
plateau and subsequent drop (type I survivorship curve), or just a 

less steep descent during post-juvenile period (type II curve) (Fig. 
3B).

Having defined the survival contingent, we can express the life 
expectancy. The life expectancy conditioned on having reached 
age t0, E(t0,t), is the expected additional years lived before dying 
given that an individual reached at least age t0. Analogously as 
before, we let E(t)=E(0,t). Formally,

and

 

Given a higher neonate/juvenile mortality than the basal mortality, 
the average life expectancy at birth is necessarily lower than the 
life expectancy at the age of basal mortality. From the age of basal 
mortality onwards, life expectancy decreases again with age (Fig. 
3C).

In the current contribution, we also use the lifespan inequality 
or its reciprocal – the lifespan equality. Given the life expectancy 
and the survival contingent, the lifespan inequality and the 
lifespan equality are defined as 

 
and, respectively,  

The lifespan inequality can be seen as a measure of how evenly 
the attained age is distributed among individuals of a population 
across time; statistically speaking, it is a normalised entropy of the 
survival contingent.

As for life expectancy, equality is expressed in relation to 
a certain age. Typically, a population with a higher neonate/
juvenile mortality will have a lower equality at birth (because 
some animals die as neonates/juveniles, whereas some survive 
to medium age) compared to a population with a lower neonate/
juvenile mortality. By contrast, when the age of basal mortality is 
reached, a population in which all individuals die soon afterwards 
will have a higher equality at that age, whereas a population in 
which some individuals achieve very long lives will, at this age, 
have a lower equality (Fig. 3D).

Fitting the model
While the Siler mortality model itself is easy to describe 
mathematically, it is far from obvious how to apply the model to 
specific animal data. Challenges that arise are, possibly, unknown 
dates of birth, currently alive animals, and small sample sizes in 
certain age categories. All measures (H, S, E, L) described above 
define the same model and can be analytically translated into 
each other. Hence, it is the user’s choice which measure is best 
estimated from the empirical data and yields the most stable fit 
to the data. We decided to fit the survival contingent. Given a 
population V, the empirical survival contingent 

 is defined as the proportion of observed individuals whose age 
exceeded t, formally, 

This quantity was calculated for t=1,2,… where t represents the 
time in days from an individual’s date of birth. Then, the Python 
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programming language and the scipy library were used to fit S(t) 
by S ̅(t) under the condition that all parameters are positive.

As the data consisted only of animals born in zoos, all birth dates 
were known. To overcome the challenge of still living individuals, 
the death age of each still living individual was sampled from a 
probability distribution – in other words, it was extrapolated. 
More precisely, the time that an alive individual x of current age 
t will survive was described by a truncated geometric random 
variable with parameter 

 

m is defined by the conditional empirical mean of the death age 
of individuals born after 1980, conditioned on reaching at least 
age t. The estimated death age was set to 

with the maximum lifespan of giraffe mage(Giraffe) = 39 (the oldest 
animal in the dataset). Pseudo-randomness was implemented by 
numpy’s random library. To account for random effects, both in the 
sampling of the death ages as well as in the fitting of the survival 
contingent, and to guarantee stable model parameters, the model 
was fitted 1,000 times per analysed population. In each fit, death 
ages were sampled independently and a subset of the individuals 
was drawn with replacement as per standard bootstrap sampling. 
Reported means of model parameters are with respect to all 
sources of randomness involved.

Calculations were performed using the scipy library of the 
Python programming language. The code can be downloaded 
at https://github.com/Klimroth/siler_mortality_methods, or 
obtained from the authors (hahnklim@mathematik.uni-frankfurt.
de, mclauss@vetclinics.uzh.ch). 

Figure S1 Survivorship graphs for zoo- and wild born giraffe Giraffa camelopardalis starting from the age of 4 years (A) excluding and (B) including animals 
lost to follow up, by individual birth cohorts. For statistics, see Table 1.


