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Abstract
Accelerometers in tracking devices are increasingly used to identify behaviour leading to detailed 
insights into the lives of free-ranging animals. To make proper use of an accelerometer, their settings 
and signals need to be tested and calibrated. Calibration of an accelerometer can be done by directly 
observing an individual animal of the species of interest, while an accelerometer is simultaneously 
measuring the movements of this individual. In case direct observations are difficult to obtain, this 
procedure can be performed with captive individuals. This study sought to calibrate the accelerometer 
sensor in GPS/GSM neck-collars in Bewick’s swans Cygnus columbianus bewickii with observations of 
captive individuals in three zoos in the Netherlands. Using a random forest classification model, five 
behavioural classes were classified with an overall accuracy of 91%. An additional behavioural class 
(aquatic foraging) was identified based on a water sensor that was also included in the GPS/GSM collars. 
This classification was subsequently applied to accelerometer data from 12 free-ranging Bewick’s 
swans equipped with these neck-collars to identify their behaviour during two spring migrations (2017 
and 2018). The resulting time-activity budgets were in general agreement with current knowledge 
based on fragmentary field observations of Bewick’s swan flocks along the flyway. The study shows 
how observations of zoo individuals can be instrumental to derive time-activity budgets of free-ranging 
individuals that can contribute to further research into the ecology of the species.

Introduction

Rapid technological developments make it possible to not only 
track the location of individual animals, but to also observe 
their behaviour remotely by including an accelerometer in 
the tracking device (Kays et al. 2015). The accelerometer is a 
sensor that measures acceleration, usually in three directions, 
that are referred to as x (surge), y (sway) and z (heave) (Yoda 
et al. 2001). By correctly interpreting the resulting data, 
the behaviour of free-ranging individuals at the moment of 
measurement can be deduced. The use of an accelerometer for 
remote observations is particularly valuable in species that are 
elusive or have a hidden lifestyle, such as marine or nocturnal 
species. Migratory animals form a special group in this respect, 

since a species might be more easily within range of direct 
observation in one season than in another. 

Just as the remote tracking of animals can reveal astonishing 
journeys by some individuals (for example in bar-tailed 
godwits Limosa Lapponica baueri; Gill et al. 2009), the use of 
accelerometers has yielded surprising insights into the lives 
of free-ranging animals. Accelerometer data confirmed that 
common swifts Apus apus stay airborne >99% of the time for 10 
months every year in the non-breeding season (Hedenström et 
al. 2016). By identifying prey captures from accelerometer data, 
it was found that foraging success in little penguins Eudyptula 
minor is reduced with higher sea surface temperatures, which 
are expected to occur more frequently in the future (Carroll et 
al. 2016). In contrast, accelerometer data revealed that part of 
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the East Atlantic flyway population of brent geese Branta bernicla 
seem to profit from their changing environment: individuals 
foraging on nutritious agricultural grassland pastures spent 
less time foraging, but nevertheless were able to advance their 
migration and arrive earlier at breeding grounds compared to 
conspecifics foraging on natural salt marshes (Dokter et al. 2018). 
Such findings can help understand the ecology of species and their 
ability to cope with changes in their environment.

Accelerometers are demanding sensors in terms of biologging 
capacity, since three numbers (x/y/z) are collected at high 
frequency. This is usually why accelerometers do not measure 
acceleration continuously but record data in short ‘bouts’ (an 
exception are the daily diaries described in Wilson et al. 2008). 
Choosing the appropriate settings (e.g. number of bouts per day, 
duration of bouts and the frequency of measurements within 
the bout) is important, because when not done correctly, it may 
become practically impossible to accurately deduce the behaviour 
of the animal from the data. The settings can have different 
optimums for different species (Pagano et al. 2017) and tracking 
devices (Kölzsch et al. 2016), which is why it is essential to test and 
calibrate the accelerometer with live observations before the start 
of the study.

Calibration of the accelerometer can be done by directly 
observing an individual animal of the species of interest, while 
an accelerometer is simultaneously measuring the movements of 
this individual. By matching the pattern of the x/y/z data with the 
observed behaviour in time, the pattern can be classified as such. 
Classification algorithms or machine learning can then be used to 
create a classification model in order to annotate acceleration data 
from free-ranging individuals with a specific behaviour (Shamoun-
Baranes et al. 2012).

Next to an accelerometer, other sensors can also be incorporated 
into tracking devices to learn about animal behaviour and the 
interaction of individuals with their environment. Some sensors 
measure internal variables such as heart rate (Duriez et al. 2014; 
Wascher et al. 2018), while others measure environmental 
variables such as temperature (Ryan et al. 2004; Sala et al. 2017). 
A less well-known sensor is the conductivity sensor. This sensor 
measures the conductivity of its surroundings and can be used to 
map aquatic environments (Hussey et al. 2015) or, for example, to 
assess the hunting circumstances for predatory electrogenic fish 
(such as electric eel and knifefish; MacIver et al. 2001). Because 
conductivity in air and water differs substantially (Pagano et al. 
2017), the sensor can also be used to detect when a device (and 
thus an individual) is submerged in water; which can be particularly 
useful in terrestrial animals that frequently swim or dive to forage.

Bewick’s swan Cygnus columbianus bewickii is a large-bodied, 
migratory bird that winters in northwest Europe and breeds at the 
European-Russian tundra. The species makes several stop-overs to 
complete its migratory journey, where it feeds to fuel its migration 
and also in spring to gain reserves for breeding (Beekman et al. 
1991; Beekman et al. 2002; Nolet 2006; Nuijten et al. 2014). 
Since 1995, the species has been declining rapidly for unknown 
reasons but supposedly because of changes during their spring 
migration. To understand this, this study sought to gain insight 
into the behaviour of Bewick’s swans during the spring migration. 
Therefore, free-ranging Bewick’s swans were equipped with 
tracking devices with built-in accelerometer and water sensor.

Captive Bewick’s swans in three zoos were used to test the 
accelerometer settings, calibrate the accelerometer sensor, and 
to derive a model to classify acceleration measurements from 
individual Bewick’s swans into relevant behaviours. To illustrate 
how observations in captive animals contribute to research on 
free-ranging animals, this paper presents an application of the 
classification model to ACC data from free-ranging Bewick’s swans 
during the spring migrations in 2017 and 2018. 

Methods

Behavioural observations
In summer 2016 and autumn 2017, behavioural observations were 
carried out in three zoos in the Netherlands. In total, four different 
Bewick’s swans, two males and two females, all with clipped 
wings, were observed for 38 hr (2016: 18 hr; 2017: 20 hr). First, 
the swans were equipped with a specifically designed, 3D-printed 
white GPS/GSM neck-collars with black alpha-numeric code to 
allow for individual recognition. The collar weighed about 70 g, 
with an inner diameter of 51 mm and a height of 80 mm. Previous 
observations with a similar sized collar showed that wearing of 
the collar did not affect the swans after four weeks, but during 
the first four weeks the swans were observed to preen more than 
their conspecifics without the collar (Nuijten et al. 2014). As the 
proportion of time spent on each of the behaviours in the captive 
individuals was not of interest, observations began one day after 
deploying the device. 

The collar contained a tri-axial accelerometer (Brown et al. 
2013) and a water sensor, and sent its data remotely via the GSM 
network to a server on a daily basis. The water sensor measures 
conductivity, which is different in water than in air (Pagano et al. 
2017). Two conductivity sensors were placed on the collars of 
the swans: one on the top left and one on the bottom right, to 
maximise the distance between them. Only if both sensors are 
submerged, will the sensor give a positive signal (‘1’). Bewick’s 
swans submerge their neck when feeding aquatically (Brouwer 
and Tinbergen 1939), so this behaviour was considered an 
indicator of aquatic foraging. 

In summer 2016, two Bewick’s swans were observed in Burgers’ 
Zoo (5 yr female, 14 yr male) and two in Stichting Vogelpark 

Behaviour Behaviour

Swimming Aquatic foraging (up-ending)

Walking Trampling

Standing alert Surfacing

Standing relaxed Drinking

Sleeping (head curled) Wing flapping

Preening feathers Vocalising

Preening collar Vigilance/Interaction with keeper

Terrestrial foraging Other

Aquatic foraging (neck down) Out-of-sight

Table 1. Ethogram that was used for the observations of captive swans 
in 2016 and 2017. Both individuals were observed simultaneously where 
possible, otherwise one of the individuals was recorded as being ‘out-of-
sight’ (x).
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Avifauna (20 yr female, 10 yr male). In Burgers’ Zoo, the swans 
were housed in a circa 10x20 m single species enclosure with a 
small pond. They had a small shelter in the back and were fed once 
a day with pellets. In Stichting Vogelpark Avifauna, the Bewick’s 
swans roamed freely in between the zoo visitors around a large 
pond. A camera attached to a laptop was used to record the swans, 
and the behaviour of the swans was recorded continuously using 
the software programme ObserverXT (Zimmerman et al. 2009). 
The programme automatically matches video recordings and 
behavioural observations in time. Both animals were observed 
simultaneously where possible. In the ethogram, 16 categories of 
behaviour were distinguished, plus two additional categories for 
‘other’ and ‘out-of-sight’ (Table 1). The acceleration sensor in the 
collar measured the acceleration in three directions every 10 sec, 
with a bout length of 5 sec and measurement frequency of 20 Hz. 

In 2017, observations were made of two Bewick’s swans 
in GaiaZOO. These were the same two individuals that were 
observed in Burgers’ Zoo the year before, as they moved between 
observation periods. In GaiaZOO, the swans were housed in a hilly 
enclosure of circa 40x40 m which they shared with red pandas 
Ailurus fulgens, Chinese muntjacs Muntiacus reevesi and common 
shelducks Tadorna tadorna. A slightly different design was 
adopted, as ObserverXT was not available in 2017 and the 2016 
observations had shown that a bout length of 2 sec was sufficient 
to capture specific behaviours of the swans. In 2017, point 
observations were used: every 30 sec the behaviour of the focal 
animal(s) was recorded and at the same synchronised timepoint 
the accelerometer also took a measurement. Similar to 2016, the 
measurement frequency of the accelerometer was 20 Hz and both 
animals were observed simultaneously where possible.

 For the analysis, the duration of the bouts from the 2016 

observations was also reduced to 2 sec by taking the first two 
seconds of every bout. The behavioural observations could be 
matched exactly with the acceleration data for both years. Bouts 
that could not be unambiguously linked to a behavioural category, 
because for example two behaviours were observed within one 
bout, were removed from the classification.

Summary statistics
In order to find identifiers in the accelerometer data, and to 
recognise behaviours based on these patterns, 20 different 
‘classifiers’ or summary statistics were calculated from the x, y 
and z data (Table 2). Most of these summary statistics have been 
used successfully in other studies before and are described there 
(see references in Table 2). The Fast Fourier Transformation is 
often used to detect periodicity (Watanabe et al. 2005), but for 
computational reasons (the summary statistics were calculated 
on board of the tracking device; Nuijten et al. 2020) this was not 
feasible here. Instead, one type of statistic was used that has, to 
the authors’ knowledge, not been used before: the ‘sumtrans’ 
statistic. For this statistic, the number of times the signal (x, y or z) 
crossed its own bout mean was calculated as an indication of the 
periodicity or repetition in the signal.

Classification and annotation: random forest analysis
There are different methods available for behavioural 
classification. Random forest is a user-friendly option that had 
the highest accuracy scores in a direct comparison with four other 
methods (Nathan et al. 2012). After annotating the accelerometer 
data with the simultaneously observed behaviours, and creating 
behavioural classes of interest from the ethogram (see Results), 
this ensemble learning decision tree method (random forest; 

Table 2. List of the 20 summary statistics used in the random forest analysis as predictors for the classification of the acceleration data.

# Name Calculation Description

1, 2, 3 mean_x, mean_y, mean_z Mean(x|y|z) Mean of x|y|z; also called ‘static acceleration’ (Watanabe et al. 2005; 
Shamoun-Baranes et al. 2012)

4, 5, 6 sd_x, sd_y, sd_z sd(x|y|z). Standard deviation of x|y|z

7, 8 min_z, max_z Min(z), max(z) Minimum z-value within bout. Only in z-direction as the neck-collars for the 
swans can turn and therefore the orientation of the x and y axis cannot be 
reliably known (Watanabe et al. 2005)

9, 10, 11 odba_x, odba_y, odba_z ∑MA(x|y|z) Sum of the differences between the x|y|z measurement and the static 
acceleration, here calculated as the sum of the moving average with a width 
of 8 (Shamoun-Baranes et al. 2012)

12 ODBA odba_x +
 odba_y +
odba_z

Sum of odba in all directions (Shamoun-Baranes et al. 2012)

13 meanslope_z Mean(∑((z[n] – 
z[n-1])/1)

Mean slope of z between two measurements

14 sdslope_z Sd(meanslope_z) Standard deviation of the slope of z

15 sumslope_z ∑(meanslope_z) Sum of the slopes of z

16, 17, 18 sumtrans_x, sumtrans_y, 
sumtrans_z

∑(ifelse(x[n] < 
mean(x|y|z) & 
mean(x|y|z) < x[n+1], 1, 0))

Number of times x crosses meanx, proxy for periodicity of signal. Substitute 
for more demanding (in terms of energy for calculation) Fast Fourier 
Transformation

19 meanvectorlength Mean(sqrt((x[n]^2)+
(y[n]^2)+(z[n]^2)))

Mean vector length for x, y and z

20 sdvectorlength sd(sqrt((x[n]^2)+
(y[n]^2)+(z[n]^2)))

Standard deviation of vector length for x, y and z
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Liaw and Wiener 2002) was used to build a classification model. 
Observation data were complemented with data from free-ranging 
flying Bewick’s swans (272 observations), as inferred from the GPS 
signal (location and speed), in spring 2017, as this behaviour could 
not be observed in the captive individuals.

The dataset was split randomly into a training (60%) and test 
(40%) dataset to build the classification model and 500 simulations 
were run. All summary statistics were included as potential 
explaining variables (Table 2). In order to check the predictive 
ability of the model, overall classification accuracy (i.e. proportion 
of correct predictions), sensitivity/recall, specificity and the 
Matthews correlation coefficient (Chicco 2017; Pagano et al. 2017) 
were calculated. The latter is regarded to be a better indicator of 
classification performance when classes are of different sizes, such 
as in the present case.

Aquatic foraging was not included in the final classification 
model, as this behaviour was not represented in the captive 
situation. This behaviour was kept as a behavioural class but was 
classified based on the water sensor information only. This meant 
that whenever the water sensor gave a positive signal (‘1’=water 
detected), the annotation of the behaviour for that bout was 
overruled and changed into aquatic foraging. The accuracy of the 
water sensor was assessed separately (see Appendix A).

Activity budget during spring migration
In winter 2016/2017, 30 free-ranging Bewick’s swans were 
equipped with a GPS/GSM neck-collar as described before. The 
sampling frequency of the different sensors was dependent on 
season and the energy level of the device (Nuijten et al. 2020). 
The individuals that provided complete accelerometer data for the 
whole spring seasons of two subsequent years (2017 and 2018) 
were selected, and time-activity budgets were compared between 
the seasons based on the final classification. This resulted in a 
dataset of two spring seasons from 12 adult female swans. GPS 
positions were taken every 15 min, ACC measurements every 
2 min (with a bout duration of 2 sec, and bout frequency of 20 
Hz) and water sensor every second (binary). The classification 
yielded time-activity budgets per individual per year in which all 
ACC datapoints were annotated with one of the five classified 
behaviours (Table 3).

To classify aquatic foraging, information from the water sensor 
was used. First the water sensor data were aggregated to batches 
of 5 min. These aggregates (i.e. 300 sec) were aligned to the ACC 
data based on the satellite timestamps of both measurements. For 
every 5 min period, it was specified whether water was detected 
(a total of >30 sec ‘1’ in raw water sensor data) or not (>270 sec ‘0’ 
in raw water sensor data). If water was detected, the overlapping 
ACC bouts were assigned a ‘1’, otherwise a ‘0’ for this statistic.

The annotated ACC bouts from spring migration data were 
visualised in time-activity budgets. Spring migration season was 
delimited as the period between 1 February and 25 May (114 days). 
The former was chosen to ensure the inclusion of the preparatory 
fueling phase (Beekman et al. 2002); the latter was found to be a 
potential ‘optimal arriving date’ for Bewick’s swans in the breeding 
grounds (Nuijten et al. 2014). Additionally, the proportion of time 
per day for the two foraging behaviours (terrestrial and aquatic) 
was calculated and compared between seasons.

Behaviour Key in Table 4

Sleeping SL

Standing ST

Swimming SW

Terrestrial active TE

Flying FLY

Aquatic foraging AQ

Table 3. Final behavioural classes in the annotation of the accelerometer 
data of free-ranging Bewick’s swans in spring 2017 and 2018. The first five 
behaviours were classified based on the random forest analysis, the sixth 
behaviour is classified based on the water sensor data.

Confusion matrix

Prediction ↓ Reference → SL ST SW TE FLY

SL 319 7 0 1 0

ST 9 516 6 59 0

SW 0 10 50 14 0

TE 1 25 4 428 0

FLY 0 0 0 0 104

Performance statistics SL ST SW TE FLY

Sensitivity/recall =TP/(TP+FN) 0.9755 0.8746 0.6757 0.9345 1

Specificity =TN/(TN+FP) 0.9918 0.9567 0.9932 0.9324 1

Matthews correlation coefficient =((TP * TN)-(FP * FN))/√((TP+FP)*(TP+FN)*(TN
+FP)*(TN+FN))

0.9652 0.8410 0.7394 0.8452 1

Table 4. Confusion matrix with predicted values for the test dataset, abbreviations for behaviours are given in Table 3. Below the matrix are the performance 
statistics of the random forest classification model per behavioural class calculated based on true positive (TP), true negative (TN), false positive (FP) and 
false negative (FN) predictions. 
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Figure 1. A: average (line) and SD (ribbon) of daily proportion of terrestrial active during spring migration of 12 free-ranging Bewick’s swans. Light green 
is 2017, dark green 2018. The same individuals were tracked in both years. B: average (line) and SD (ribbon) of daily proportion of aquatic foraging during 
spring migration of 12 free-ranging Bewick’s swans. Light blue is 2017, dark blue 2018. The same individuals were tracked in both years. C: smoothed 
regression lines (Loess regression) of data in Figure 1A and 1B of both years combined. Vertical lines represent the peaks in aquatic foraging for 2017 (left) 
and 2018 (right).
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Results

From ethogram to behavioural classes
The original behaviours identified during the observations (Table 1) 
were grouped into eight biologically relevant behavioural classes: 
sleeping, standing alert, standing relaxed, walking, swimming, 
preening, terrestrial foraging and aquatic foraging. These together 
contained >95% of the total observations. Two static behaviours, 
standing alert and standing relaxed, were combined into one 
class (‘standing’), as the difference between them (a neck straight 
indicating alertness compared to a more curved neck) was 
arbitrary and proved difficult to distinguish sometimes during 
the observations. The third static behaviour, sleeping (i.e., head 
tucked), gave a unique signal and accounted for a large proportion 
of the data, so this remained a category of its own. Walking and 
terrestrial feeding were combined in the category ‘terrestrial 
active’, as it was noticed that the majority of walking performed 
by Bewick’s swans is in combination with feeding. Preening 
feathers and preening collar were initially observed as separate 
behaviours based on the idea that preening of the collar would 
give more extreme values for x, y and z (not only caused by the 
movement of the neck but also of the collar itself, while the swan 
was plucking it). This turned out not to be the case, and because of 
the similarity between the two preening behaviours, classification 
was more accurate when combining the two.

In the captive swans, preening took up a large proportion of the 
day (as was expected since the swans were only given the collar 
one day before observations started). To prevent this from having 
an effect on the classification, preening time was reduced to 
10% of the total, as was observed in free-ranging Bewick’s swans 
during their migration (Nolet et al. 2001; Nolet and Klaassen 
2005; Nolet et al. 2007). In a test version of the classification 
model, it was clear that terrestrial foraging was often mistaken 
for preening; therefore, it was decided to include the preening 
into the behavioural class terrestrial active. This means that in the 
final results, it will not be possible to distinguish between these 
behaviours, but it will be possible to estimate the total time a 
swan spent on them combined. Eventually, six behavioural classes 
were identified, of which five were classified in the classification 
model and one (aquatic foraging) was annotated based on the 
water sensor data (Table 3).

Classification model
The five behavioural classes used in the random forest classification 
model were classified with an overall accuracy of 91.2% (89.7–92.6, 
95% CI). There were some differences between the behaviours in 
the accuracy of the prediction (Table 4). Flying (FLY) was predicted 
with a 100% accuracy, while swimming (SW) proved to be much 
more difficult to predict correctly (69%). Swimming was mostly 
confused with terrestrial active and standing (Table 4). Not all 
summary statistics were important for the classification (Appendix 
B). The three most important statistics were maximum z-value, 
mean z-value, and ODBA. Based on those three values alone, the 
accuracy of the classification for the five behaviour classes would 
still be 91.0% (Appendix C). Since a selection for valuable summary 
statistics is beyond the scope of this study, all summary statistics 
were retained in the final model.

The final classification model was applied to two years of 
spring migration data from 12 free-ranging female Bewick’s swans 
(Appendix D). After classification by the final classification model, 
the annotation was overwritten by aquatic foraging (AQ) if the 
water sensor detected water at that point in time. In 90% of cases, 
a terrestrial active classification was overwritten, followed by 5% 
for swimming, 4% standing and <0.5% for both sleeping and flying. 

Foraging during spring migration 2017 and 2018
Applying the classification model to ACC data from free-ranging 
Bewick’s swans yielded detailed time-activity budgets during the 
spring migration in two consecutive years (Appendix D). There was 
a particular interest in foraging behaviours (both terrestrial and 
aquatic) and whether this would differ within individuals between 
seasons. A clear pattern of alternation between terrestrial and 
aquatic foraging was observed over the course of the spring 
migration season (Figure 1A and B). Despite considerable variation 
both among and within individuals (Appendix D), a distinct shift 
in this alternation was visible when comparing both seasons. In 
spring 2017, the peak of aquatic foraging occurred at day 93 (3 
April; Figure 1C) while in spring 2018 this was 20 days later (23 
April; Figure 1C). With these peaks, coinciding troughs were visible 
in terrestrial activity at days 94 (4 April) and 113 (23 April) for 2017 
and 2018, respectively. In total, the swans foraged (terrestrial and 
aquatic foraging combined) for 61.0 days in 2017 and 56.2 days in 
2018 out of the 114 days of spring migration analysed here.

Discussion

It was possible to classify the behaviours of Bewick’s swans with 
high accuracy. The high accuracy for flying was not surprising, as 
other studies also show that this behaviour is characterised by high 
dynamic body acceleration (Bishop et al. 2015; Shamoun-Baranes 
et al. 2012; 2016). The behaviour with the lowest accuracy, 
swimming, was noticed during the observations to be performed 
in different forms. Fast swimming, for example, was different 
from slow swimming in terms of neck movements (and thus collar 
movements detected by the accelerometer). The differences in 
swimming speed were partly due to differences in the enclosures. 
In Burgers’ Zoo and GaiaZOO, the swans only had a small pond 
to bath, while in Stichting Vogelpark Avifauna the swans had the 
opportunity to swim for larger distances, which they sometimes 
did when they were for example chased by other waterfowl in the 
enclosure. This variation could have resulted in lower accuracy 
compared to other behaviours. Despite the lower accuracy, it was 
decided to keep swimming in as a single behaviour. It was assumed 
that swimming conditions in free-ranging Bewick’s swans would 
also be very variable, as the swans frequently commute on open 
(sea) waters with waves from the tide and/or the wind. Having 
an already diverse practice dataset on which to build the model 
might thus actually be beneficial.

Although behavioural classification based on an accelerometer 
sensor may yield a sophisticated proxy for the actual behaviours 
performed by an individual, the interpretation may differ from 
when behaviour is derived from direct observations. In direct 
observations in the field, the environment in which this behaviour 
is executed can also be recorded and taken into account in the 
interpretation and analysis. This is true for both the ecological 
environment (e.g., is a swan walking on a steep slope or slippery 
underground?) and the social environment (is a certain interaction 
causing specific behaviour to take place?) of the individual. With 
remote recordings of acceleration as a proxy for behaviour, 
these types of additional information are often not available. 
Additionally, while there is space for scoring ‘out-of-sight’ or 
‘other’/’unknown’ as a behaviour in real-life focal observations 
with the option to omit these observations for later analysis, the 
accelerometer provides data for all measuring bouts, regardless of 
the context, including those where behaviour is not unambiguous. 
When applying the classification model to data from free-ranging 
(unobserved) individuals, every measuring bout is classified as 
one of the behaviours in the model, thereby ignoring all other 
behaviours that might have taken place but that were not in the 
classification model. Despite the fact that this sounds rather non-
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nuanced, the choices for the behavioural classes of interest can 
ensure that much of the behaviour is captured in the model. In 
this case, for example, more than 95% of all observations in the 
zoo were represented in the five behavioural classes that were 
used in the model. If this is assumed to be fully representative of 
the situation in free-ranging individuals, it would mean that five 
percent of the accelerometer data is falsely classified as one of the 
behavioural classes. This aspect of remotely observing behaviour 
by using an accelerometer is usually neglected, since the overall 
patterns can still be studied.

In this case, the agreement between the individual time-activity 
budgets created from the ACC data (Appendix D) and knowledge 
from field observations of flocks of swans provided confidence 
in the classification. First, the daily roost flights during dusk and 
dawn were well detected (Nolet et al. 2002; Nuijten et al. 2020); 
so well that the time-activity budgets clearly show the increasing 
day length during spring time (Appendix D). Second, most of the 
terrestrial active behaviour took place during the day (Appendix 
D), and resting/sleeping during the night, which is appropriate 
in diurnal animals such as the Bewick’s swan. Third, it was found 
that the periods in which aquatic foraging took place throughout 
the day, were when the swans were staging in the Baltic states, 
foraging in the bays or Estonia, or near the White Sea in Russia 
in the estuary of the Northern Dvina River (Nolet et al. 2001; 
2007; Nolet and Klaassen 2005; Nuijten et al. 2020). Outside these 
periods, when the swans tend to sleep on water, aquatic foraging 
was mainly restricted to the night (Nolet et al. 2002; Appendix D).

When looking at the proportion of time the swans spent 
foraging, it was noticeable that, despite considerable variation 
within and between individuals, a clear pattern was visible in both 
years (Figure 1). The swans mainly foraged on terrestrial food 
sources, except for a period during their migration where they 
switch to aquatic resources. Comparison with GPS data shows 
this took place in Estonia and the Dvina Bay in Russia (Nuijten 
et al. 2020). Further north of these sites, closer to the breeding 
grounds, the swans return to terrestrial sources. Total foraging 
time seems to increase as spring progresses in May.

Calculating the total time spent foraging during the 114 days 
of spring migration included in this study, it was striking that this 
covers approximately half of the total time (61 days in 2017 and 
56 days in 2018). Even if part of the terrestrial active category is 
preening (probably around 10%; Nolet et al. 2001; 2007; Nolet 
and Klaassen 2005), this is a considerable amount of time that the 
swans need to arrive at their breeding grounds on time and with 
the necessary reserves to initiate breeding (Nuijten et al. 2014).

Further analysis of this type of data, which is beyond the scope 
of this study, can answer a whole range of questions, for example 
about the effects of disturbances on foraging time and energy 
expenditure of individuals (Linssen et al. 2019) or the feasibility 
of the migration strategy of Bewick’s swans under varying 
environmental conditions (Lameris et al. 2017). These findings can 
eventually be used to model the annual cycle of a species and yield 
insights into carry-over effects and potential fitness consequences 
(van Wijk et al. 2017).

Results such as these can only be derived with detailed 
knowledge of the behavioural repertoire of individual animals. In 
many species, it is not possible to acquire this from wild individuals, 
and captive individuals can offer a solution. It is often questioned 
whether the behaviour of captive animals is representative of 
the behaviour of free-ranging conspecifics (Veasey et al. 1996). 
At least for the current purpose, it is argued that it is, although 
the behavioural repertoire might be smaller or larger than in free-
living conspecifics. This study shows how observations of zoo 
animals can be instrumental to derive time-activity budgets of 
free-ranging individuals that in turn facilitate further research into 
the ecology of the species. 
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